Chebyshev expansion applied to the one-step wave extrapolation matrix

Reynam Pestana

CPGG/UFBA and INCT-GP/CNPQ reynam@cpgg.ufba.br

84th SEG Annual Meeting 26-31 October 2014

Denver, Colorado, USA

Acoustic wave equation

The acoustic wave equation in a source free medium with constant density is

$$\frac{\partial^2 p}{\partial t^2} = -L^2 p; \quad \text{with} \quad -L^2 = v^2 \nabla^2 \tag{1}$$

where $\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$ is the Laplacian operator,

 $p = p(\mathbf{x}, t)$ is the pressure and $\mathbf{x} = (x, y, z)$ and

 $v = v(\mathbf{x})$ is the compressional-wave velocity.

Equation (1) is a second order differential equation in the time variable.

Acoustic wave equation - An exact solution

Taking the wave equation (1)

$$\frac{\partial^2 p}{\partial t^2} = -L^2 p;$$
 with $-L^2 = v^2 \nabla^2$ (2)

Initial conditions: $p(t=0) = p_0$ and $\frac{\partial p}{\partial t}(t=0) = \dot{p_0}$ Solution:

$$p(t) = \cos(L t) p_0 + \frac{\sin(L t)}{L} \dot{p_0}$$
(3)

The wavefields $p(t + \Delta t)$ and $p(t - \Delta t)$ can be evaluated by equation (3). Adding these two wavefields results in:

$$p(t + \Delta t) + p(t - \Delta t) = 2 \cos(L\Delta t) p(t)$$
(4)

Standard finite-difference schemes

$$p(t + \Delta t) + p(t - \Delta t) = 2 \cos(L\Delta t) p(t)$$

Taking the Taylor series expansion of $cos(L\Delta t)$.

Second order:
$$\left(1 - \frac{(L\Delta t)^2}{2}\right)$$

 $p(t + \Delta t) - 2p(t) + p(t - \Delta t) = -\Delta t^2 L^2 p(t)$ (5)

Fourth order: $(1 - \frac{(L\Delta t)^2}{2} + \frac{(L\Delta t)^4}{24})$

$$p(t + \Delta t) - 2 p(t) + p(t - \Delta t) = -\Delta t^2 L^2 p(t) + \frac{\Delta t^4}{12} L^4 p(t)$$
(6)
Standard finite-difference schemes (Etgen, 1986; Soubaras and

Zhang, 2008).

э

Explicit finite scheme

Using the 2nd order in time and higher-order finite differences, the forward propagation can be calculated as:

$$p_{i,j,k}^{n+1} = 2p_{i,j,k}^n - p_{i,j,k}^{n-1} + \Delta t^2 v_{i,j,k}^2 \left\{ (\nabla^2)^M \right\} p_{i,j,k}^n$$
(7)

where,

$$p_{i,j,k}^n = p(i\Delta x, j\Delta y, k\Delta z, n\Delta t)$$

and Δt is temporal step size and $\Delta x, \Delta y, \Delta z$ are spatial sampling interval.

・ロト・雪・・雪・・雪・ つんの

Explicit finite scheme

The Laplacian with Mth order of accuracy can be given by

$$\left\{ (\nabla^2)^M \right\} p_{i,j,k}^n = w_o \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right) p_{i,j,k}^n$$

$$+ \sum_{m=1}^{M/2} w_m \left\{ \frac{1}{\Delta x^2} \left(p_{i-m,j,k}^n + p_{i+m,j,k}^n \right) \right.$$

$$+ \frac{1}{\Delta y^2} \left(p_{i,j-m,k}^n + p_{i,j+m,k}^n \right)$$

$$+ \frac{1}{\Delta z^2} \left(p_{i,j,k-m}^n + p_{i,j,k+m}^n \right) \right\}$$

$$(8)$$

▲ロト▲聞ト▲臣ト▲臣ト 臣 めんゆ

Stability condition

The stability condition for isotropic modeling is as follow (Lines et al. 1999)

$$\Delta t < \frac{\Delta d}{v_{max}} \frac{2}{\sqrt{\mu}} \tag{9}$$

$$\mu = \sum_{m=-M/2}^{m=M/2} \left(|w_m^x| + |w_m^y| + |w_m^z| \right)$$

where $\Delta d = \min(\Delta x, \Delta y, \Delta z)$ and v_{max} is the maximum velocity in the medium.

The grid spacing is governed by maximum frequency or,

$$F_{max} = \frac{v_{min}}{G\Delta d}$$

Modeled with different FD schemes with $F_{max} = 30Hz$, $\Delta d = 20m$ and 2.5 points per short wavelength. 2nd order (left), 4th order (center) and 14th order (right)

Modeled with 2nd order (left) and 4th order (right) with $F_{max} = 30Hz$ and $\Delta d = 5.0m$.

Acoustic wave equation - An exact solution

$$\frac{\partial^2 p}{\partial t^2} = -L^2 p; \quad \text{with} \quad -L^2 = c^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \quad (10)$$

Initial conditions:

$$p(t=0) = p_0 \qquad rac{\partial p}{\partial t}(t=0) = \dot{p_0}$$

Solution:

$$p(t) = \cos(L t) p_0 + \frac{\sin(L t)}{L} \dot{p_0}$$
(11)

The wavefields $p(t + \Delta t)$ and $p(t - \Delta t)$ can be evaluated by equation (11). Adding these two wavefields results in:

$$p(t + \Delta t) + p(t - \Delta t) = 2 \cos(L\Delta t) p(t)$$
(12)

The Rapid Expansion Method (REM)

The cosine function is given by (Kosloff et. al, 1989)

$$\cos(L\Delta t) = \sum_{k=0}^{M} C_{2k} J_{2k}(R\Delta t) Q_{2k}\left(\frac{iL}{R}\right)$$
(13)

Chebyshev polynomials recursion is given by:

$$Q_{k+2}(w) = (4w^2 + 2) Q_k(w) - Q_{k-2}(w)$$

with the initial values: $Q_0(w) = 1$ and $Q_2(w) = 1 + 2w^2$

For 3D case:
$$R = \pi c_{max} \sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}}$$
,

The summation can be safely truncated with a $M > R \Delta t$ (Tal-Ezer, 1987).

Laplace evaluation: $-L^2 = v^2 \nabla^2$

Fourier transformation scheme :

$$\frac{\partial^2 p}{\partial x^2} = IFFT[-k_x^2 FFT[p(x)]]$$

Finite difference:

$$\frac{\partial^2 p_j^n}{\partial x^2} \approx \frac{\delta^2 p_j^n}{\delta x^2} = \frac{1}{\Delta x^2} \sum_{l=-N}^N C_l \, p_{j+l}^n$$

Convolutional filter (FIR):

$$FIR(I) = D_2(I) * H(I)$$

where $D_2(I) * H(I)$ is a Hanning tapered version of the standard operator $D_2(I)$

Reynam Pestana - CPGG/UFBA and INCT-GP/CNPQ Chebyshev expansion and one-step wave extrapolation matrix

э

Separable Approximation

Normally, operators used in seismic imaging can be approximated as a series of separable terms such as

$$2\cos[L(\mathbf{x},\mathbf{k})\Delta t] \approx \sum_{j=0}^{N} a_j(\mathbf{x}) b_j(\mathbf{k})$$
(14)

where n is the number of terms in the series. Thus, extrapolation in time is then approximated by

$$\rho(\mathbf{x}, t + \Delta t) + \rho(\mathbf{x}, t - \Delta t) \approx \\ \approx \sum_{j=0}^{n} a_j(\mathbf{x}) \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} b_j(\mathbf{k}) P(\mathbf{k}, t) e^{i(\mathbf{k} \cdot \mathbf{x})} d\mathbf{k} \quad (15)$$

Separable Approximation

The time wave propagation can be performed in the following way:

$$p(\mathbf{x}, t + \Delta t) = -p(\mathbf{x}, t - \Delta t) +$$

+
$$\sum_{j=1}^{N} a_j(v) FFT^{-1} b_j(\mathbf{k}) FFT p(\mathbf{x}, t)$$
(16)

For the 2D case, each $b_j(\mathbf{k})$ is given by

$$b_j(\mathbf{k}) = \cos(v_j \sqrt{k_x^2 + k_z^2} \Delta t)$$

For each marching time step, this method requires one fast Fourier transform (FFT) and N inverse fast Fourier transforms (IFFT).

Velocity model

Bepth (ka)

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣�?

Reverse time migration using 3 velocities

Reverse time migration using 5 velocities

Reverse time migration using 10 velocities

One-step wave extrapolation matrix

The pressure wavefield \hat{P} is now a complex wavefield (Zhang and Zhang, 2009) defined as

$$\hat{P}(x,z,t) = p(x,z,t) + i q(x,z,t)$$
 (17)

where q(x, z, t) = H[p(x, z, t)].

For general media, the complex pressure wavefield \hat{P} satisfies the following first-order partial equation in the time direction :

$$\frac{\partial \hat{P}}{\partial t} + i\Phi \hat{P} = 0. \tag{18}$$

where $\Phi = v\sqrt{-\nabla^2}$ and its symbol is $\phi = v(x,z)\sqrt{k_x^2 + k_z^2}$.

One-step wave extrapolation matrix

Considering a velocity constant case, i.e., v = V, the solution is:

$$\hat{P}(\mathbf{x},t+\Delta t) = FFT^{-1}e^{-iV\sqrt{k_x^2+k_z^2}\Delta t}FFT\ \hat{P}(\mathbf{x},t).$$
(19)

For variable velocity, the solution can be symbolically written as

$$\hat{P}(\mathbf{x}, t + \Delta t) = e^{-i \Phi \Delta t} \hat{P}(\mathbf{x}, t).$$
(20)

where
$$\Phi = v\sqrt{-\nabla^2}$$
 and its symbol is $\phi = v(x,z)\sqrt{k_x^2 + k_z^2}$.

Numerical solution of the one-step wave extrapolation matrix

Zhang and Zhang (2009) applied a method based on an optimized separable approximation (OSA) which was proposed by Song (2001).

$$e^{-i\phi\Delta t}\approx\sum_{n=1}^Na_n(V)\,b_n(k)$$

 $a_n(V)$ and $b_n(k)$ are the left and right eigenfunctions of the two dimension function $A(V, k) = exp(-iVk\Delta t)$.

where
$$V \in [V_{min}, V_{max}]$$
, $k = \sqrt{k_x^2 + k_z^2} \in [k_{min}, k_{max}]$.

For every time step extrapolation, the OSA method requires one fast Fourier transform (FFT) and N inverse fast Fourier.

$$\frac{\partial \hat{P}}{\partial t} + i\Phi \hat{P} = 0. \tag{21}$$

$$\hat{P}(x,z,t) = p(x,z,t) + i q(x,z,t)$$
 (22)

$$\frac{\partial U}{\partial t} = A U, \quad \text{with} \quad A = \begin{pmatrix} 0 & \Phi \\ -\Phi & 0 \end{pmatrix}, \quad (23)$$

where $U = [p, q]^T$ is the $2N_x \times N_z$ component vector of the pressure and Hilbert transform of the pressure wavefield and A is a matrix.

The solution of the differential equation 23 is given by:

$$U(t + \Delta t) = e^{A\Delta t} U(t)$$
(24)

Now, to compute e^{At} , we start with the Jacobi-Anger approximation:

$$e^{ikR\cos\theta} = \sum_{n=0}^{M} \varepsilon_n \ i^n J_n(kR) \cos(n\theta) \tag{25}$$

where $\varepsilon_0 = 1, \varepsilon_n = 2, n \ge 1$ and J_n represents the Bessel function of order n.

For $z = i \cos \theta$, we have that $Q_n(z) = i^n \cos(n\theta)$

The modified polynomials of Chebyshev and they satisfy the following recurrence relation:

$$Q_{n+1}(z) = 2z \ Q_n(z) + Q_{n-1}(z);$$
 (26)

with $Q_0(z) = I$ and $Q_1(z) = z$.

Choosing $k = \Delta t$ and z = A/R, we obtain:

$$e^{A\Delta t} = \sum_{n=0}^{M} \varepsilon_n J_n(\Delta t R) Q_n(A/R)$$
(27)

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● ● ●

The first question about this expansion is the value of R.

The matrix A is anti-symmetric $(A^T = -A)$ - the eigenvalues are all pure imaginary.

To guarantee that θ is real, $R = |\lambda_{max}|$ i.e, R has to be the maximum eigenvalue of A.

Here, we have for the 2D case, that

$$R = v_{max} \pi \sqrt{(1/\Delta x)^2 + (1/\Delta z)^2}$$

To guarantee that the series converges, we must assure that $M > R\Delta t$ (Tal-Ezer, 1986)

Summarizing, the scheme using the Tal-Ezer's technique is written as:

$$\begin{pmatrix} p(t+\Delta t)\\ q(t+\Delta t) \end{pmatrix} = \sum_{n=0}^{M} \varepsilon_n J_n(\Delta tR) Q_n \left\{\frac{A}{R}\right\} \begin{pmatrix} p(t)\\ q(t) \end{pmatrix}$$
(28)

Now, we can compute all Chebyshev polynomial terms using its recurrence relation that is now given by:

$$Q_{n+1}\left[\frac{A}{R}\right]\left(\begin{array}{c}p(t)\\q(t)\end{array}\right) = 2\left(\frac{A}{R}\right)Q_{n}\left[\frac{A}{R}\right]\left(\begin{array}{c}p(t)\\q(t)\end{array}\right) + Q_{n-1}\left[\frac{A}{R}\right]\left(\begin{array}{c}p(t)\\p(t)\end{array}\right)$$
(29)

where:

$$Q_0 \begin{bmatrix} \frac{A}{R} \end{bmatrix} \begin{pmatrix} p(t) \\ q(t) \end{pmatrix} = \begin{pmatrix} p(t) \\ q(t) \end{pmatrix}$$
(30)

and

$$Q_1 \begin{bmatrix} A \\ \overline{R} \end{bmatrix} \begin{pmatrix} p(t) \\ q(t) \end{pmatrix} = \frac{1}{R} \begin{pmatrix} \Phi p(t) \\ -\Phi q(t) \end{pmatrix}$$
(31)

To numerically implement this system, we need to compute the Φ operator applied on both *p* and *q* wavefields.

$$\Phi[p] = v(x, z) \ FFT^{-1} \left[\sqrt{k_x^2 + k_z^2} \ FFT(p) \right]$$
(32)

Numerical Examples

The two-layer model - PS method with $\Delta t = 1.0$ ms

Two layel velocity model (a) ; Snapshot at 0.6 s computed by the conventional pseudospectral method using a time-step value of 1.0 ms (b); Source location: $x_s = 1920 \text{ m}$, $z_s = 1470 \text{ m}$

Numerical Examples

```
The two-layer model - (F_{max} = 50 Hz; \Delta t_{Nqy} = 10 ms)
```


Chebyshev expansion method for the one-step wave extrapolation matrix using time-step values of 1.0 ms (a) and 4.0 ms (b).

Numerical Examples

The two-layer model

Chebyshev expansion method for the one-step wave extrapolation matrix using time-step values of 8.0 ms (a) and 10.0 ms (b).

э

Salt model: P-wave velocity model

Source location: $x_s = 1690$ m, $z_s = 1200$ m

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … の Q ()

Modeling using time-step value of 4.0 ms

▲口 ▶ ▲眉 ▶ ▲臣 ▶ ▲臣 ▶ ● ○ ○ ○ ○

Modeling using time-step value of 8.0 ms

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Modeling using time-step value of 10.0 ms

 $F_{max} = 50$ Hz; $\Delta t_{Nqy} = 10$ ms

- イロ・ 人間・ 人間・ 人間・ 人口・

Conclusions:

- The proposed numerical algorithm is based on the series expansion using the modified Chebyshev polynomials and with the pseudodifferential operator Φ computed using the Fourier method and the proposed algorithm can handle any velocity variation.
- The results demostrated that the method is capable to extrapolate wavefieds in time up to the Nyquist time limit in a stable way and free of dispersion noise when the number of terms of the Chebyshev expansion is appropriately chosen.
- Our method can be easily extended to 3D problems and can be applied for performing high quality modeling and imaging of seismic data.

Acknowledgments

This research was supported by CNPq and INCT-GP/CNPq. The facility support from CPGG/UFBA is also acknowledged.

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● � � � �

Thank you for your attention.

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペ

